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tersects the intial cell number (NO; line "b" ). The 
parameter hO is the physiological state, representing 
the readiness of the population for growth, and &- 
fines the relationship between the lag and growth 
rate: hO=Lag? mrnax. 

Fitting sigmoidal growth models requires extensive 
data over most or all of the three growth phases. 
Often only limited data are available from the early 
stages of growth, thus it would be useful to have a 
simple method for estimating the lag time. 

Introduction 
Development of the model 

The presence of pathogenic bacteria in foods pre- 
sents a serious hazard to consumers, and is of great 
concern to the food industry. End-product testing is 
expensive and labour-intensive, thus alternative ap 
proaches to the control of food-borne pathogens are 
sought. In support of these efforts, the field of pre- 
dictive microbiology -the application of mathemati- 
cal models to microbial survival and growth- has 
expanded in recent years, with two books having 
been published within the last decade (3, 5). 

When bacteria are exposed to a favourable envirorr 
ment, growth generally follows a sigmoidal curve 
(Figure 1). The initial phase -the lag- is a period in 
which the cells become adapted to the new envirorr 
ment, followed by a phase of exponential growth. 
The stationary phase results from the accumulation 
of toxic waste products or the depletion of essential 
nutrients, and is sometimes followed by a death 
phase. The lag and exponential growth phases are 
of most interest to food microbiologists, because it 
is during these periods that microbes are most sensi- 
tive to intervention strategies. 

In order to predict the growth of bacteria it is neces- 
sary to calculate the lag phase duration and the ex- 
ponential growth rate from sigmoidal growth 
curves, and various models have been proposed (4). 
The growth rate is generally easy to estimate, since 
it depends solely on the current environment; how- 
ever, the lag phase is more challenging, since it is 
largely influenced by the prior hlstory (or physio- 
logical state) of the inoculum. Figure 2 shows the 
lag phase in more detail. The lag is defined as the 
point relative to the time axis at which a tangent to 
the exponential portion of the growth curve (line 
"a") -with slope equal to the growth rate rnrnax- in 

From Figure 2 we can see that, at the end of the lag 
phase, the total number of cells (represented by the 
solid line) has increased over the initial cell number, 
NO. The magnitude of this increase can be calcw 
lated by making some assumptions about the cell 
population. We assume that, at the start of the ex- 
periment, there are two populations of cells: those 
that start growing at t=O with no lag (G), and those 
that do not grow (NG). The G cells grow exponerr 
tially from an initial number (GO), and give rise to 
line "a" in Figure 2 (note that the Y-axis is scaled in 
natural logarithm @n] units). The total number of 
NG cells at t=O is NO-GO, and does not change with 
time. Adding these populations together at each 
time interval gives the solid line in Figure 2, the 
growth curve. 

At the end of the lag phase (where lines "a" and "b" 
intersect), the NG cells are unchanged, while the G 
cells have grown from GO to a number equivalent to 
the intial cell number, NO. Thus the total cell popw 
lation at t=Lag (NLag) is 2NO-GO. It is now possi- 
ble to see that the NLag changes in a predictable 
manner. If the value of GO is small (resulting in a 
long lag), then NLag approaches 2N0. When the 
lag phase is short, or absent (as in the case of expo- 
nential cells), most or all of the cells are initially 
GO, and NLag=NO. Thus the total number of cells 
at the end of the lag phase is between NO and 2N0. 
Generally, unless the lag is very short, the value of 
NLag is close to 2N0 (although the mathematics h 
volved in demonstrating this is rather complex, and 
will not be presented here). 



Interpretation References 

We have limited knowledge of the actual behav- 
iour of cells during the lag phase, so the model 
described above is based on some assumptions. 
However, the 
intercept of lines "a" and "b" is generally ac- 
cepted as the definition of the lag, and the mathe- 
matical representation presented here is based on 
accepted growth models (1, 2). We can now &- 
fine the lag phase as the time required for the ini- 
tial cell population to double. Thus, in cases 
where there are limited data over the whole 
growth period, it is sufficient to hive data fiom 
the first few hours of growth. Using a non-linear 
regression program, curves such as a cubic spline 
can be fitted to the data, and through interpoh- 
tion it is possible to calculate the time required 
for the initial cell population to double, and get a 
good estimate of the lag time. 

The lag time is a concept related to the bacterial 
growth curve, but in fact it has no real meaning 
in terms of the potential risk posed by a culture 
of bacteria. The lag is often thought of as a 
"safe" period; however, we have seen that over 
this period the initial cell population can double. 
If we consider that a doubling of the population 
is a simple measure of the potential risk, we see 
that, in the case where the lag is long, a doubling 
occurs by the end of the lag phase. Where there 
is little or no lag, a doubling of the cell number is 
simply the doubling time of an exponential popu- 
lation. Thus, the time required for a food-borne 
pathogen to double in number can be used as a 
simple measure of bacterial lag time, and an esti- 
mate of the risk. 
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Figure 1. Bacterial growth curve 

Figure 2. Mathematical parameters describing the lag phase of 
the bacterial growth curve 


